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Hypersensitivity to perturbations of quantum-chaotic wave-packet dynamics
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We reexamine the problem of the ‘‘Loschmidt echo,’’ that measures the sensitivity to perturbation of
quantum-chaotic dynamics. The overlap squaredM (t) of two wave packets evolving under slightly different
Hamiltonian is shown to have the double-exponential initial decay}exp(2constant3e2l0t) in the main part of

the phase space. The coefficientl0 is the self-averaging Lyapunov exponent. The average decayM̄}e2l1t is

single exponential with a different coefficientl1. The volume of phase space that contributes toM̄ vanishes in
the classical limit\→0 for times less than the Ehrenfest timetE5

1
2 l0

21u ln \u. It is only after the Ehrenfest
time that the average decay is representative for a typical initial condition.

DOI: 10.1103/PhysRevE.67.025204 PACS number~s!: 05.45.Mt, 03.65.Sq, 03.65.Yz, 05.45.Pq
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Chaos in classical mechanics is characterized by an e
nential sensitivity to initial conditions: The separation of tw
trajectories that are initially close together increases in t
}elt with a rate given by the Lyapunov exponentl. There is
no such sensitivity in quantum mechanics because the o
lap of two wave functions is time independent. This elem
tary observation is at the origin of a large literature~reviewed
in a textbook@1#! on quantum characterizations of chao
dynamics.

One particularly fruitful line of research goes back to t
proposal of Schack and Caves@2#, motivated by earlier work
of Peres@3#, to characterize chaos by the sensitivity to p
turbations. Indeed, if one and the same statec0 evolves un-
der the action of two different HamiltoniansH and H
1dH, then the overlap

M ~ t !5u^c0uei (H1dH)t/\e2 iHt /\uc0&u2 ~1!

is not constrained by unitarity. Jalabert and Pastawski@4#
discovered thatM (t) ~which they referred to as th
‘‘Loschmidt echo’’! decays}e2lt if c0 is a narrow wave
packet in a chaotic region of phase space, providing an
pealing connection between classical and quantum chao

The discovery of Jalabert and Pastawski gave a new
petus@5# to what Schack and Caves called ‘‘hypersensitiv
to perturbations’’ of quantum-chaotic dynamics. The pres
paper differs from this body of literature in that we consid
the statisticsof M (t) as c0 varies over the chaotic phas
space. We find that the average decayM̄ (t)}e2lt is due to
regions of phase space that become vanishingly small in
classical limit \eff→0. ~The effective Planck constant\eff
5\/S0 is set by the inverse of a typical actionS0.! The
dominant decay is adouble exponential}exp(2constant
3e2lt), so it is truly hypersensitive. The slower singl
exponential decay is recovered at the Ehrenfest timetE
5 1

2 l21u ln\effu.
Before presenting our analytical theory, we show in Fig

the data from a numerical simulation that illustrates the
persensitivity mentioned above. The Hamiltonian is t
quantum kicked rotator@1#
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H5
p̂2

2
1K cosx(

n
d~ t2n!, p̂5

\

i

d

dx
. ~2!

The perturbed HamiltonianH85H1dH is obtained by the
replacementK→K1dK. The coordinatex is periodic, x
[x12p. To work with a finite-dimensional Hilbert space
we discretizexk52pk/N, k51,2, . . . ,N. The momentum
pm5m\ is a multiple of\, to ensure single-valued wave
functions. For\[\eff52p/N the restriction to the first Bril-
louin zone results in a single bandpm52pm/N, m
51,2, . . . ,N. The time evolutione2 iHn/\[Un after n peri-
ods, of the initial Gaussian wave packetck
5N21/2exp(pN21@2im0k2(k2k0)

2#), is given by the Floquet
operator in thex-representation:

Uk8k5
1

AN
expS ip~k82k!2

N
2 i

NK

2p
cos

2pk

N D . ~3!

We use the fast Fourier transform algorithm to computeUn

for N up to 106 @6#.

FIG. 1. The overlapM at t5n for the quantum kicked rotato

for three different ways of averaging:s M̄ , L exp(ln M), d

exp„2exp@ln(2lnM)#…. We took K510, dK51.631023, N
5106. Averages are taken over 2000 random initial conditions o
Gaussian wave packet. The dotted line shows the Lyapunov d
}e2nl1 with l151.1. At n53, we have only an upper bound fo
the logarithmic averages because cancellations in the calcula
limit the accuracy.
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We study the statistics ofM (t) by comparing in Fig. 1
three different ways of averaging over initial positio
(m0 ,k0) of the Gaussian wave packet. We usedK510, dK
51.631023, andN5106 (\eff56.2831026). While the av-
erageM̄ decays exponentially, the two logarithmic averag
have a much more rapid initial decay. We estimate thatM
,10223 at n53 for about 30% of randomly chosen initia
conditions. For the same pointn53, only 9% of initial con-
ditions ~corresponding toM.0.2) account for 80% of the
total value of M̄ . The typical decay ofM (t) is therefore
much more rapid than the exponential decay of the aver
M̄ .

Statistical fluctuations also affect the decay rate ofM̄ set
by the Lyapunov exponent according to Ref.@4#. The defini-
tion of the Lyapunov exponent

l05 limt→`t21lnudx~ t !/dx~0!u

gives l051.65 for the classical kicked rotator withK510.
However,M (t) in Fig. 1 has exponentl151.1, defined by

l j52 lim
t→`

~ j t !21lnudx~ t !/dx~0!u2 j . ~4!

Since fluctuations oft21lnudx(t)/dx(0)u decrease liket21/2,
the Lyapunov exponentl0 is self-averaging@7#, while the
l j ’s are not.

For an analytical description, we start from the Gauss
one-dimensional wave packet

c~x!5S a

p\ D 1/4

expS i
p0x

\
1~ ib2a!

~x2x0!2

2\ D . ~5!

The wave packet is centered at the pointx0(t),p0(t) which
moves along a classical trajectory. Initially,b(t50)50 and
a(t50)51. Divergence of trajectories leads to the expon
tial broadening of the packet, thusa(t)}exp(22lt). Since
a!1 for t@1/l, the wave packet in phase space becom
highly elongated with lengthl i5A\(11b2)/a and width
l'5\/ l i . The parameterb5Dp/Dx represents the tilt angle
of the elongated wave packet@8#. The Gaussian approxima
tion ~5! breaks down at the Ehrenfest timetE5 1

2 l21u ln \u
when l i becomes of the order of the size of the system.

We assume thatc evolves according to Hamiltonia
H(K) and c8 according toH85H(K1dK). The overlap
M5u^c8uc&u2 of the two Gaussian wave packets is

M5A aa8

ā214db2
expS 2

ā~dp2b̄dx!2

2~ ā214db2!\
2

aa8dx2

2ā\
D

~6!

in terms of the~weighted! meanā5(a1a8)/2, b̄5(b8a
1ba8)/(a1a8), and difference dp5p082p0 , dx5x08
2x0 , da5a82a, db5b82b. In order of magnitude,
db/b̄.da/ā.dK!1. The displacement vector (dx,dp)
has componentD i.dKelt parallel to the elongated wav
packets and componentD'.dK perpendicular to them~see
Fig. 2!.
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Depending on the strength of perturbation, one may d
tinguish three main regimes:dK,\, \,dK,A\, anddK
.A\. We will consider in detail the intermediate regime\
,dK,A\ and discuss the two other regimes more briefly
the end of the paper.~The simulations of Fig. 1 are at th
upper end of the intermediate regime, sincedK51.6
31023 and A\52.531023.) The three regimes may b
characterized by the relative magnitude of the Ehrenfest t
tE and the perturbation dependent time scalet0
5 1

2 l21u ln dKu. In the intermediate regime, one has1
2 tE

,t0,tE .
To estimate the relative magnitude of the two terms in

exponent of Eq.~6!, we write

dp2b̄dx5~11b̄2!1/2D'5 f dK, ~7!

ā

ā214db2
[Q5

e2lt

11~ge2ltdK !2
. ~8!

Here,f andg are functions of the order of unity of timet and
the initial locationxi ,pi of the wave packet. The second ter
in the exponent~6! is of the orderādx2/\.dK2/\, while
the first term is of the orderQdK2/\. Since Q@1 for t
,2t0, and 2t0.tE in the intermediate regime, we may ne
glect the second term relative to the first term within t
entire ranget,tE of validity of the Gaussian approximation
Equation~6! thus simplifies to

M5~ āQ!1/2exp@2 1
2 Q~ f dK !2/\#. ~9!

We seek the statistics ofM (t) generated by varying
xi ,pi . The statistics is nontrivial because fluctuations inf of
the order of unity cause exponentially large fluctuations inM
if QdK2/\@1, which is the case for 2t02tE,t,tE . The
average ofM is then dominated by the nodal linesxn(p) in
phase space at whichf vanishes~at a particular timet). If
Dxn is the typical spacing of these lines at constantp, then
the derivative] f /]xi at xn is of order 1/Dxn . This yields

M̄5~ āQ!1/2E dx

Dxn
expF2S x2xn

Dxn
D 2 QdK2

2\ G
.~ ā\/dK2!1/25~A\/dK !e2lt. ~10!

Assuming independent fluctuations in the~perturbation de-
pendent! distribution of nodal lines and in the rate of dive

FIG. 2. Schematic illustration of two perturbed wave packets
phase space fort,t0.
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gence of trajectories for the individual Hamiltonian, we i
corporate fluctuations inl in Eq. ~10! via exp(2lt)→exp
(2l1t), in accordance with Eq.~4!. Hence, we recover the
exponential decay of the Loschmidt echo@4#, although with
the exponentl1 instead ofl0 ~in agreement with the numer
ics of Fig. 1!. The exponential decay sets in fort.2t0

2tE , while for shorter times,M̄ remains close to unity@9#.
The volumeV of phase space near the nodal lines contr

uting to M̄ is of the orderV5(\/QdK2)1/2. This volume
decreases exponentially in time fort,t0, reaching the mini-
mal value V05A\/dK!1 at t0. For larger times,V in-
creases saturating at a value of the order of unity attE . We,
therefore, conclude that the averageM̄ is only representative
for the typical decay, ift.tE . For smaller times, the averag
is dominated by rare fluctuations that represent only a sm
fraction of the chaotic phase space.

To obtain an average quantity that is representative fo
typical point in phase space, we take logarithmic average
Eq. ~9!. For t,t0, one has

ln M.2~dK2/\!exp~2l22t !, ~11!

ln ln~1/M !52l0t2 ln~\/dK2!1O~1!. ~12!

~The coefficientl22 in ln M appears because we average
square of displacement.! The double logarithmic averag
~12!, given by the self-averaging Lyapunov exponentl0, is
least sensitive to fluctuations and is representative for
main part of phase space. The typical overlap thus has
double-exponential decay

M.exp@2const3~dK2/\!e2l0t#, ~13!

down to a minimal valueM0.exp(2dK/\) at t5t0.
The initial decay~13! for t!t0 is the same as obtained i

Ref. @10# for the classical fidelity~defined as the overlap o
two classical phase space densities!. In that problem, the role
of \ is played by the initially occupied volume of phas
space. A superexponential decay of the classical fidelity
also been obtained by Eckhardt@11#.

The origin of the decay~13! is illustrated in Fig. 2. For
t,t0, the wave packets are nearly parallel (db!ā), dis-
placed laterally by an amountD'}dK. Their overlap is an
exponential function}exp(2D'

2/l'
2), where the widthl' of

each wave packet decreases exponentially in time}e2lt.
Hence, we obtain the double-exponential decay.

For t.t0 ~when db@ā), the overlap of the two wave
packets is dominated by their crossing pointxc ,pc . The
overlapM.exp(2const3uxc2x0u2/ l i

2) now increaseswith
time becausel i}elt. Sinceuxc2x0u.D' /db. f , the cross-
ing point falls outside the range of validity of the Gaussi
approximation unlessu f u!1. The result~10! is justified~be-
cause it is dominated by nodes off ), but we cannot use the
Gaussian approximation to extend the formula~13! for the
typical decay tot.t0. The typical decay and the averag
decay become the same attE , so the typicalM should in-
crease from its minimal valueM0 at t0 to the valueME
02520
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5(A\/dK)e2ltE5\/dK at tE . Both M0 and ME are !1,
but M0 is exponentially small indK/\, while ME is only
algebraically small.

For t.tE , one can use the semiclassical WKB descr
tion of elongated wave packets, along the lines of Ref.@12#.
The phase space representation of the wave functionc is
concentrated along the line on the torusp(x) of length l i
.A\elt@1, see Fig. 3. The functionp(x) is multivalued
and each branchk has a WKB wave function with amplitude
rk'1/l i and phasesk :

c5(
k

Arke
isk /\, pk5dsk /dx. ~14!

For dK.\, the overlap of two oscillating wave function
c,c8 of the form ~14! may be found in a stationary phas
approximation. The stationary points are given by the cro
ingsp(xj )5p8(xj ) of the two linesp(x), p8(x) given by the
evolution with HamiltoniansH,H8. For tE,t,tE12t0,
the number of crossingsNc is proportional tol i and indepen-
dent ofdK. This is because both the lateral displacement
p andp8 and their relative angles are of the same orderdK.
~In Fig. 3, we havel i.20Nc.) Each crossing contributes t
^cuc8&, an amount

Pj5Ar~xj !r8~xj !E dxexpF i
k~x2xj !

2

2\
1 if j G

.~eif j / l i!A\/dK, ~15!

wherek5d2(s2s8)/dx2uxj
.dK and\f j5s(xj )2s8(xj ).

The phasef j varies randomly from one crossing to the othe
leading to

M̄5
\

l i
2dK

(
j , j 851

Nc

ei (f j 2f j 8).
\

l idK
.

A\

dK
e2l1t. ~16!

Due to the large number of crossings, there is now lit
difference betweenM̄ and logarithmic averages. Fort.tE

12t0, the number of crossings becomesNc.dKl i
2 . ~The

distance between almost parallel segments ofp8(x) is of the

FIG. 3. Two perturbed wave packets in phase space fortE,t
,tE12t0. The lines showp(x) ~solid! and p8(x) ~dashed! ex-
tracted from the Husimi function evolved with the quantum kick
rotator, forN5106, K57, dK50.1, n55. Dots show the crossing
pointsxj that contribute to the overlap in stationary phase appro
mation.
4-3
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order 1/l i , and the linep(x) crosses at the angledK about
dKl i@1 segments per unit length.! This leads to saturation
of the overlap atM̄.\.

This completes our discussion of the intermediate reg
\,dK,A\. We conclude with a brief discussion of the tw
other regimes. FordK.A\, the longitudinal displacemen
of the packets exceeds their lengths,D i. l i . The logarithmic
averages now remain the same, butM̄ is changed. The domi
nant contributions toM̄ are now given by the rare events fo
which both D' and D i vanish. This leads toM̄
.(\/dK2)e2l1t for t,2t0. ~The same Lyapunov decay a
in the intermediate regime, but with a much smaller pref
tor.! For 2t0,t,tE , the length of each wave packet r
mains small,l i.A\elt!1, but the displacement saturates
the maximal valueD i.1. In this time range, the averag
overlap has a plateau atM̄.\/dK. Finally, for t.tE , the
decay~16! M̄.(A\/dK)e2l1t is recovered.

In the remaining regimedK!\, we find from Eq.~6! that
M (t) remains close to unity fort,tE , regardless of the
initial location of the wave packet.~This also results in in-
sensitivity to the way of averaging.! The golden-rule decay
@5#, with rateG.(dK/\)2, sets in only after the Ehrenfes
time: M̄.exp@2G(t2tE)# for t.tE . These results are de
picted in Fig. 4. The golden-rule decay persists until
Heisenberg timetH.1/\ or the saturation timeG21u ln\u,
whichever is smaller.~Only the initial decay is shown in Fig
4.! The Gaussian decay@5# sets in fort.tH , provided that
dK,\3/2.

In summary, we have shown that statistical fluctuatio
play a dominant role in the problem of the Loschmidt ec
on time scales below the Ehrenfest time. While the deca
R
d

d
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the squared overlapM (t) of two perturbed wave packets i
exponential on an average, as obtained previously@4#, the
typical decay is double exponential. It is only after th
Ehrenfest time that the main part of phase space follows
single-exponential decay ofM̄ . The Ehrenfest time has bee
heavily studied in connection with the quantum-to-classi
correspondence@5#. The role that this time scale plays i
suppressing statistical fluctuations has not been anticipate
this large body of literature.
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FIG. 4. Decay of the average overlap for the quantum kick
rotator (K510) in the golden-rule regime. We keepG
50.023(NdK)2 fixed by takingdK[1/N. Circles from bottom to

top giveM̄ for N5103,104,105,106,43106. The inset demonstrate
that n0 scales with lnN, as expected for the Ehrenfest time.
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